Animal culture can be defined as the ability of non-human to learn and transmit through processes of social or cultural learning.
Culture is increasingly seen as a process, involving the social transmittance of behavior among peers and between generations. It can involve the transmission of novel behaviors
The existence of culture in non-humans has been a contentious subject, sometimes forcing researchers to rethink "what it is to be human".
The notion of culture in other animals dates back to Aristotle in classical antiquity, and more recently to Charles Darwin, but the association of other animals' actions with the actual word 'culture' originated with Japanese primatology' discoveries of socially-transmitted food behaviours in the 1940s.
An important area of study for animal culture is vocal learning, the ability to make new sounds through imitation. Most species cannot learn to imitate sounds. Some can learn how to use innate vocalizations in new ways. Only a few species can learn new calls. The transmission of vocal repertoires, including some types of bird vocalization, can be viewed as social processes involving cultural transmission. Some evidence suggests that the ability to engage in vocal learning depends on the development of specialized brain circuitry, detected in humans, dolphins, bats and some birds. The lack of common ancestors suggests that the basis for vocal learning has evolved independently through evolutionary convergence.
Animal culture can be an important consideration in conservation management. As of 2020, culture and sociality were included in the aspects of the management framework of the Convention on the Conservation of Migratory Species of Wild Animals (CMS).
Culture, when defined as the transmission of behaviors from one generation to the next, can be transmitted among animals through various methods.Matsuzawa, Tetsurō, Masaki Tomonaga, and M. Tanaka. Cognitive Development in Chimpanzees. Tokyo: Springer, 2006. The most common of these methods include imitation, teaching, and language. Imitation has been found to be one of the most prevalent modes of cultural transmission in non-human animals, while teaching and language are much less widespread, with the possible exceptions of primates and cetaceans. Some research has suggested that teaching, as opposed to imitation, may be a characteristic of certain animals who have more advanced cultural capacities.
The likelihood of larger groups within a species developing and sharing these traditions with peers and offspring is much higher than that of one individual spreading some aspect of animal behavior to one or more members. Cultural transmission, as opposed to individual learning, is therefore a more efficient manner of spreading traditions and allowing members of a species to collectively inherit more adaptive behavior. This process by which offspring within a species acquires his or her own culture through mimicry or being introduced to traditions is referred to as enculturation. The role of cultural transmission in cultural evolution, then, is to provide the outlet for which organisms create and spread traditions that shape patterns of animal behavior visibly over generations.
Until the 1980s, teaching, or social learning, was a skill that was thought to be uniquely human. However, research continued through the 1990s and beyond documented the existence of social learning among animal groups, which is not limited to mammals. Many insects, for example have been observed demonstrating various forms of teaching in order to obtain food. Ants, for example, will guide each other to food sources through a process called "tandem running", in which an ant will guide a companion ant to a source of food. It has been suggested that the "pupil" ant is able to learn this route in order to obtain food in the future or teach the route to other ants. By the early 2000s, various studies that show that cetaceans are able to transmit culture through teaching as well. Orcas are known to "intentionally beach" themselves in order to catch and eat who are breeding on the shore. Mother orcas teach their young to catch pinnipeds by pushing them onto the shore and encouraging them to attack and eat the prey. Because the mother orca is altering her behavior in order to help her offspring learn to catch prey, this is evidence of teaching and cultural learning. The intentional beaching of the orcas, along with other cetacean behaviors such as the variations of songs among humpback whales and the sponging technique used by the bottlenose dolphin to obtain food, provide substantial support for the idea of cetacean cultural transmission.
Teaching is arguably the social learning mechanism that affords the highest fidelity of information transfer between individuals and generations, and allows a direct pathway through which local traditions can be passed down and transmitted.
The most famous of these eating behaviors was observed on the island of Koshima, where one young female was observed carrying soiled sweet potatoes to a small stream, where she proceeded to wash off all of the sand and dirt before eating. This behavior was then observed in one of the monkey's playmates, then her mother and a few other playmates. The potato-washing eventually spread throughout the whole macaque colony. Imanishi introduced the Japanese term kaluchua which was later translated by Masao Kawai and others to refer to the behavior as "pre-culture" and as being acquired through "pre-cultural propagation". The researchers caution that "we must not overestimate the situation and say that 'monkeys have culture' and then confuse it with human culture."
The first evidence of apparently arbitrary traditions came in the late-1970s, also in the behavior of primates. At this time, researchers McGrew and Tutin found a social grooming handclasp behavior to be prevalent in a certain troop of chimpanzees in Tanzania, but not found in other groups nearby. This grooming behavior involved one chimpanzee taking hold of the hand of another and lifting it into the air, allowing the two to groom each other's armpits. Though this would seem to make grooming of the armpits easier, the behavior actually has no apparent advantage. As the primatologist Frans de Waal explains from his later observations of the hand-clasp grooming behavior in a different group of chimpanzees, "A unique property of the handclasp grooming posture is that it is not required for grooming the armpit of another individual... Thus it appears to yield no obvious benefits or rewards to the groomers."
Prior to these findings, opponents to the idea of animal culture had argued that the behaviors being called cultural were simply behaviors that had evolved due to their importance to survival. After the identification of this initial non-evolutionarily advantageous evidence of culture, scientists began to find differences in group behaviors or traditions in various groups of primates, specifically in Africa. More than 40 different populations of wild chimpanzees have been studied across Africa, between which many species-specific, as well as population-specific, behaviors have been observed. The researching scientists found 65 different categories of behaviors among these various groups of chimpanzees, including the use of leaves, sticks, branches, and stones for communication, play, food gathering or eating, and comfort. Each of the groups used the tools slightly differently, and this usage was passed from chimpanzee to chimpanzee within the group through a complex mix of imitation and social learning.
Whiten et al. further made sure that these local traditions were not due to differences in ecology, and defined cultural behaviors as behaviors that are "transmitted repeatedly through social or observational learning to become a population-level characteristic". Eight years later, after "conducting large-scale controlled social-diffusion experiments with captive groups", Whiten et al. stated further that "alternative foraging techniques seeded in different groups of chimpanzees spread differentially...across two further groups with substantial fidelity".
This finding confirms not only that nonhuman species can maintain unique cultural traditions; it also shows that they can pass these traditions on from one population to another. The Whiten articles are a tribute to the unique inventiveness of wild chimpanzees, and help prove that humans' impressive capacity for culture and cultural transmission dates back to the now-extinct common ancestor we share with chimpanzees.
Similar to humans, social structure plays an important role in cultural transmission in chimpanzees. Victoria Horner conducted an experiment where an older, higher ranking individual and a younger, lower ranking individual were both taught the same task with only slight aesthetic modification. She found that chimpanzees tended to imitate the behaviors of the older, higher ranking chimpanzee as opposed to the younger, lower ranking individual when given a choice. It is believed that the older higher ranking individual had gained a level of 'prestige' within the group. This research demonstrates that culturally transmitted behaviors are often learned from individuals that are respected by the group.
The older, higher ranking individual's success in similar situations in the past led the other individuals to believe that their fitness would be greater by imitating the actions of the successful individual. This shows that not only are chimpanzees imitating behaviors of other individuals, they are choosing which individuals they should imitate in order to increase their own fitness. This type of behavior is very common in human culture as well. People will seek to imitate the behaviors of an individual that has earned respect through their actions. From this information, it is evident that the cultural transmission system of chimpanzees is more complex than previous research would indicate.
Chimpanzees have been known to use tools for as long as they have been studied. Andrew Whiten found that chimpanzees not only use tools, but also conform to using the same method as the majority of individuals in the group. This conformity bias is prevalent in human culture as well and is commonly referred to as peer pressure.
The results from the research of Victoria Horner and Andrew Whiten show that chimpanzee social structures and human social structures have more similarities than previously thought.
Cetacean vocalizations have been studied for many years, specifically those of the bottlenose dolphin, humpback whale, killer whale, and sperm whale. Since the early 1970s, scientists have studied these four species in depth, finding potential cultural attributes within group dialects, foraging, and migratory traditions. Hal Whitehead, a leading cetologist, and his colleagues conducted a study in 1992 of sperm whale groups in the South Pacific, finding that groups tended to be clustered based on their vocal dialects. The differences in the whales' songs among and between the various groups could not be explained genetically or ecologically, and thus was attributed to social learning. In mammals such as these sperm whales or bottlenose dolphins, the decision on whether an animal has the capacity for culture comes from more than simple behavioral observations. As described by ecologist Brooke Sergeant, "on the basis of life-history characteristics, social patterns, and ecological environments, bottlenose dolphins have been considered likely candidates for socially learned and cultural behaviors," due to being large-brained and capable of vocal and motor imitation.
In dolphins, scientists have focused mostly on foraging and vocal behaviors, though many worry about the fact that social functions for the behaviors have not yet been found. As with primates, many humans are reluctantly willing, yet ever so slightly willing, to accept the notion of cetacean culture, when well evidenced, due to their similarity to humans in having "long lifetimes, advanced cognitive abilities, and prolonged parental care."
Vocalizations have also been proven to be culturally acquired in orca and sperm whale populations, as evidenced by the distinct vocalization patterns maintained by members of these different populations even in cases where more than one population may occupy one home range. Even within the same community clan, the three southern resident orca pods maintain unique, stable dialects separate from each other's, though they are associated and share some and whistles. The majority of their vocalizations are repetitions of the same calls, referred to as discrete or stereotyped calls, recorded since the 1960s and passed on by the orcas from generation to generation. A Southern Resident calf only learns the discrete calls used in the pod of their mother, though exposed to other calls in the clan.
Further study is being done in the matrilineal whales to uncover the cultural transmission mechanisms associated with other advanced techniques, such as Animal migration strategies, new foraging techniques, and babysitting.
In order to make a case for cultural transmission as the mode of behavioral inheritance in this case, Krutzen et al. needed to rule out possible genetic and ecological explanations. The Krutzen et al. refer to data that indicate both spongers and nonspongers use the same habitat for foraging. Using mitochondrial DNA data, Krutzen et al. found a significant non-random association between the types of mitochondrial DNA pattern and sponging. Because mitochondrial DNA is inherited maternally, this result suggests sponging is passed from the mother.
In a later study one more possible explanation for the transmission of sponging was ruled out in favor of cultural transmission. Scientists from the same lab looked at the possibility that 1.) the tendency for "sponging" was due to a genetic difference in diving ability and 2.) that these genes were under selection. From a test of 29 spongers and 54 nonspongers, the results showed that the coding mitochondrial genes were not a significant predictor of sponging behavior. Additionally, there was no evidence of selection in the investigated genes.
Though this research is fairly recent, it is often used as a prime example of evidence for culture in non-primate, non-cetacean beings. Animal migration may be in part cultural; released ungulates have to learn over generations the seasonal changes in local vegetation.
In the black rat ( Rattus rattus), social transmission appears to be the mechanism of how optimal foraging techniques are transmitted. In this habitat, the rats' only source of food is pine seeds that they obtain from pine cones. Terkel et al. studied the way in which the rats obtained the seeds and the method that this strategy was transmitted to subsequent generations. Terkel et al. found that there was an optimal strategy for obtaining the seeds that minimized energy inputs and maximized outputs. Naïve rats that did not use this strategy could not learn it from trial and error or from watching experienced rats. Only young offspring could learn the technique. Additionally, from cross-fostering experiments where pups of naïve mothers were placed with experienced mothers and vice versa, those pups placed with experienced mothers learned the technique while those with naïve mothers did not. This result suggests that this optimal foraging technique is socially rather than genetically transmitted.
Despite this hindrance, evidence for differing dialects among songbird populations has been discovered, especially in sparrows, , and . In these birds, scientists have found strong evidence for imitation-based learning, one of the main types of social learning. Though the songbirds obviously learn their songs through imitating other birds, many scientists remain skeptical about the correlation between this and culture: "...the ability to imitate sound may be as reflexive and cognitively uncomplicated as the ability to breathe. It is how imitation affects and is affected by context, by ongoing social behavior, that must be studied before assuming its explanatory power." The scientists have found that simple imitation does not itself lay the ground for culture, whether in humans or birds, but rather it is how this imitation affects the social life of an individual that matters.
By raising white-crowned sparrows different acoustic settings and observing effects on their verbal behavior, Marler and Tamura found that the sparrows learned songs during the first 100 days of their lives. In this experimental setting, male birds in acoustic chambers were exposed to recorded sounds played through a loudspeaker. They also showed that white-crowned sparrows only learn songs recorded from other members of their species. Marler and Tamura noted that this case of cultural transmission was interesting because it required no social bond between the learner and the emitter of sound (since all sounds originated from a loudspeaker in their experiments).
However, the presence of social bonds strongly facilitates song imitation in certain songbirds. rarely imitate songs played from a loudspeaker, but they regularly imitate songs of an adult bird after only a few hours of interaction. Interestingly, imitation in zebra finches is inhibited when the number of siblings (pupils) increases.
A spread of new foraging behaviors also occurred in an Argentinian population of kelp gulls (Kelp gull). During the 20th century, individuals in this population began to non-fatally wound the backs of swimming whales with their beaks, feeding on the blubber and creating deeper lesions in areas that were already wounded. Aerial photographs showed that gull-induced lesions on local whales increased in frequency from 2% to 99% from 1974 to 2011, and that this behavior was not observed in any other kelp gull populations other than two isolated incidents.
In New South Wales, researchers and citizen scientists were able to track the spread of lid-flipping skills as cockatoos learned from each other to open garbage bins. Bin-opening spread more quickly to neighbouring suburbs than suburbs further away. In addition, birds in different areas developed their own variants for accomplishing the complex task.
In wild songbirds, social networks are a mechanism for information transmission both within and between species. Interspecific networks (i.e. networks including birds of different species) were shown to exist in multispecies flocks containing three different types of tits whose Ecological niche overlapped. In this study, knowledge about new feeding areas spread through social interactions: more birds visited the new area than the number of birds that discovered the area independently. The researchers noted that information likely travelled faster among members of the same species (conspecifics), but that individuals did not depend solely on conspecifics for transmission. Another study on army-ant-following birds has also evidenced interspecific transmission of foraging information.
A 2016 study used RFID identification transponders to experimentally manipulate avian social networks: this scanner technology allowed them to restrict access to feeders for some birds and not others. Their data showed that individuals are more likely to learn from those who were able to enter the same feeding area as them. Additionally, the existing "paths" of information transmission were altered following segregation during feeding: this was attributed to changes in the population's social network.
Others have been able to predict the pattern information transmission among individuals based on a preexisting social network. In this study, social interactions of ravens ( Common raven) were first analyzed to create a comprehensive network. Then, the order in which individuals learned task-solving behavior from a trained tutor was compared with the network. They not only found that the pattern of learning reflected the network that they had built, but that different types of social connections (such as "affiliative interactions" and "aggressive interactions") characterized different rates of information transmission and observation.
Conformity is one mechanism through which innovative behaviors can become embedded in culture. In an experimental setting, tits preferentially adopted the locally popular method of opening a two-action puzzle box even after discovering the other possible way of accessing the food. This formed diverging local traditions when different populations were seeded with birds specifically trained in one method.
Other research showed that although conformity has a strong influence on behaviors adopted by birds, the local tradition can be abandoned in favor of an analogous behavior which gives higher reward. This showed that while conformity is a beneficial mechanism for quickly establishing traditions, unhelpful traditions will not necessarily be adhered to in the presence of a better alternative.
In some cases, conformity-based aggression may benefit individuals who conform to traditions. Researchers used the framework of sexual selection and conformism in of song types of songbirds to model territorial aggression against individuals with non-conforming song types. Their model showed that aggressors won more frequently when targeting non-conformers (than in un-targeted or random aggression). They also found that alleles for conformity-enforcement propagated more effectively than alleles for tolerance of non-conformity.
Finally, other species of birds have been observed to conform to the personality of other individuals in their presence. Gouldian finches ( Gouldian finch) exist in red- and black-headed subtypes, and these subtypes have been shown to have different levels of boldness (measured by the time taken to explore new areas, and other similar tests). Experiments placing black-headed birds (known to be less bold) in the company of red-headed birds (known to be more bold) resulted in the black-headed bird performing "bolder" behaviors, and red-headed birds became "shyer" in the presence of black-headed ones. The experimenters hypothesized that this individual-level conformity could lead to stronger social cohesion.
In a similar experiment looking at mating sites in Bluehead wrasse ( Thalassoma bifasciatum), researcher Warner found that individuals chose mating sites based on social traditions and not based on the resource quality of the site. Warner found that although mating sites were maintained for four generations, when entire local populations were translocated elsewhere, new sites were used and maintained.
Culture is just one source of adaptive behavior an organism exhibits to better exploit its environment. When behavioral variation reflects differential phenotypic plasticity, it is due more to ecological pressures than cultural ones. In other words, when an animal changes its behavior over its lifespan, this is most often a result of changes in its environment. Furthermore, animal behavior is also influenced by evolved predispositions, or genetics. It is very possible that "correlation between distance between sites and 'cultural difference' might reflect the well-established correlation between genetic and geographical distances". The farther two populations of a species are separated from each other, the less genetic traits they will share in common, and this may be one source of variance in culture.
Another argument against the "ethnographic method" is that it is impossible to prove that there are absolutely no ecological or genetic factors in any behavior. However, this criticism can also be applied to studies of human culture. Though culture has long been thought to arise and remain independent of genetics, the constraints on the propagation and innovation of cultural techniques inevitably caused by the genome of each respective animal species has led to the theory of gene-culture coevolution, which asserts that "cognitive, affective, and moral capacities" are the product of an evolutionary dynamic involving interactions between genes and culture over extended periods of time.Herbert Gintis. Phil. Trans. R. Soc. B 2011 366, 878–888 The concept behind gene-culture coevolution is that, though culture plays a huge role in the progression of animal behavior over time, the genes of a particular species have the ability to affect the details of the corresponding culture and its ability to evolve within that species.
Culture can also contribute to differences in behavior, but like genes and environments, it carries different weight in different behaviors. As Laland and Janik explain, "to identify cultural variation, not only is it not sufficient to rule out the possibility that the variation in behavior constitutes unlearned responses to different selection pressures from, but it is also necessary to consider the possibility of genetic variation precipitating different patterns of learning." Gene-culture coevolution, much like the interaction between cultural transmission and environment, both serve as modifiers to the original theories on cultural transmission and evolution that focused more on differences in the interactions between individuals.
Imitation
Language
Primate culture
Chimpanzees
Cetacean culture
Matrilineal whales
Dolphins
Rat culture
Avian culture
Examples of culturally transmitted behaviors in birds
Bird song
Innovative foraging
Migration
Nest construction
Tool-making
Avian social networks
Conformity in avian culture
Fish culture
Controversies and criticisms
Unanswered questions and future areas of exploration
See also
Further reading
External links
|
|